Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
J Pharm Pharmacol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652540

RESUMO

OBJECTIVES: Dopamine and related receptors are evidenced in pancreatic endocrine tissue, but the impact on islet ß-cell stimulus-secretion as well as (patho)physiological role are unclear. METHODS: The present study has evaluated islet cell signalling pathways and biological effects of dopamine, as well as alterations of islet dopamine in rodent models of diabetes of different aetiology. KEY FINDINGS: The dopamine precursor L-DOPA partially impaired glucose tolerance in mice and attenuated glucose-, exendin-4, and alanine-induced insulin secretion. The latter effect was echoed by the attenuation of glucose-induced [Ca2+]i dynamics and elevation of ATP levels in individual mouse islet cells. L-DOPA significantly decreased ß-cell proliferation rates, acting predominantly via the D2 receptor, which was most abundant at the mRNA level. The administration of streptozotocin (STZ) or high-fat diet (HFD) in mice significantly elevated numbers of dopamine-positive islet cells, with HFD also increasing colocalization of dopamine with insulin. At the same time, colocalization of dopamine with glucagon was increased in STZ-treated and pregnant mice, but unaffected by HFD. CONCLUSION: These findings highlight a role for dopamine receptor signalling in islet cell biology adaptations to various forms of metabolic stress.

2.
Biofactors ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635341

RESUMO

Pancreatic polypeptide (PP) is a postprandial hormone secreted from pancreatic islets that activates neuropeptide Y4 receptors (NPY4Rs). PP is known to induce satiety but effects at the level of the endocrine pancreas are less well characterized. In addition, rapid metabolism of PP by dipeptidyl peptidase-4 (DPP-4) limits the investigation of the effects of the native peptide. Therefore, in the present study, five novel amino acid substituted and/or fatty acid derivatized PP analogs were synthesized, namely [P3]PP, [K13Pal]PP, [P3,K13Pal]PP, [N-Pal]PP, and [N-Pal,P3]PP, and their impact on pancreatic beta-cell function, as well as appetite regulation and glucose homeostasis investigated. All PP analogs displayed increased resistance to DPP-4 degradation. In addition, all peptides inhibited alanine-induced insulin secretion from BRIN-BD11 beta cells. Native PP and related analogs (10-8 and 10-6 M), and especially [P3]PP and [K13Pal]PP, significantly protected against cytokine-induced beta-cell apoptosis and promoted cellular proliferation, with effects dependent on the NPY4R for all peptides barring [N-Pal,P3]PP. In mice, all peptides, except [N-Pal]PP and [N-Pal,P3]PP, evoked a dose-dependent (25, 75, and 200 nmol/kg) suppression of appetite, with native PP and [P3]PP further augmenting glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) induced reductions of food intake. The PP peptides had no obvious detrimental effect on glucose tolerance and they did not noticeably impair the glucose-regulatory actions of GLP-1 or CCK. In conclusion, Pro3 amino acid substitution of PP, either alone or together with mid-chain acylation, creates PP analogs with benefits on beta-cell rest, islet cell turnover, and energy regulation that may be applicable to the treatment of diabetes and obesity.

3.
Clin Med Insights Endocrinol Diabetes ; 17: 11795514241238059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486712

RESUMO

Obesity and diabetes mellitus are prevalent metabolic disorders that have a detrimental impact on overall health. In this regard, there is now a clear link between these metabolic disorders and compromised bone health. Interestingly, both obesity and diabetes lead to elevated risk of bone fracture which is independent of effects on bone mineral density (BMD). In this regard, gastrointestinal (GIT)-derived peptide hormones and their related long-acting analogues, some of which are already clinically approved for diabetes and/or obesity, also seem to possess positive effects on bone remodelling and microarchitecture to reduce bone fracture risk. Specifically, the incretin peptides, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), as well as glucagon-like peptide-2 (GLP-2), exert key direct and/or indirect benefits on bone metabolism. This review aims to provide an initial appraisal of the relationship between obesity, diabetes and bone, with a focus on the positive impact of these GIT-derived peptide hormones for bone health in obesity/diabetes. Brief discussion of related peptides such as parathyroid hormone, leptin, calcitonin and growth hormone is also included. Taken together, drugs engineered to promote GIP, GLP-1 and GLP-2 receptor signalling may have potential to offer therapeutic promise for improving bone health in obesity and diabetes.


Impact of peptides from the gut on bone health in obesity and diabetes mellitus Obesity and related type 2 diabetes (T2D) are prevalent diseases. Unfortunately, there is now a clear link between obesity and related T2D and poor bone health, leading to increased bone fracture risk. However, we know that peptides derived from the gut following a meal can possess positive effects on bone health and reduce bone fracture risk. These peptides are called glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP). Moreover, some of these peptides, GLP-1 and GIP, are already being used to treat obesity and T2D, whilst GLP-2 is used to treat people with short bowel syndrome. In other words, drugs that mimic the action of GLP-1, GLP-2 and GIP are available for human use. This current review article aims to provide an initial appraisal of the relationship between obesity, diabetes and bone health, with a focus on the positive impact of peptide hormones like GLP-1, GLP-2 and GIP for bone health in obesity/diabetes. The take home message is that drugs engineered to promote GIP, GLP-1 and GLP-2 action may have potential to offer therapeutic promise for improving bone health in obesity and diabetes.

4.
Methods Mol Biol ; 2758: 291-306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549020

RESUMO

Several amphibian peptides that were first identified on the basis of their antimicrobial or cytotoxic properties have subsequently shown potential for development into agents for the treatment of patients with Type 2 diabetes. A strategy is presented for the isolation and characterization of such peptides that are present in norepinephrine-stimulated skin secretions from a range of frog species. The methodology involves (1) fractionation of the secretions by reversed-phase HPLC, (2) identification of fractions containing components that stimulate the rate of release of insulin from BRIN-BD11 clonal ß-cells without simultaneously stimulating the release of lactate dehydrogenase, (3) identification of active peptides in the fractions in the mass range 1-6 kDa by MALDI-ToF mass spectrometry, (4) purification of the peptides to near homogeneity by further reversed-phase HPLC on various column matrices, and (5) structural characterization by automated Edman degradation. The effect of synthetic replicates of the active peptides on glucose homeostasis in vivo may be evaluated in appropriate animal models of Type 2 diabetes such as db/db mice and mice fed a high fat diet to produce obesity, glucose intolerance, and insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Camundongos , Humanos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Linhagem Celular , Insulina/metabolismo , Anuros/metabolismo , Pele/metabolismo
5.
Peptides ; 175: 171180, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401671

RESUMO

Investigations conducted since 2018 have identified several host-defense peptides present in frog skin secretions whose properties suggest the possibility of their development into a new class of agent for Type 2 diabetes (T2D) therapy. Studies in vitro have described peptides that (a) stimulate insulin release from BRIN-BD11 clonal ß-cells and isolated mouse islets, (b) display ß-cell proliferative activity and protect against cytokine-mediated apoptosis and (c) stimulate production of the anti-inflammatory cytokine IL-10 and inhibit production of the pro-inflammatory cytokines TNF-α and IL-1ß. Rhinophrynin-27, phylloseptin-3.2TR and temporin F are peptides with therapeutic potential. Studies in vivo carried out in db/db and high fat-fed mice have shown that twice-daily administration of [S4K]CPF-AM1 and [A14K]PGLa-AM1, analogs of peptides first isolated from the octoploid frog Xenopus amieti, over 28 days lowers circulating glucose and HbA1c concentrations, increases insulin sensitivity and improves glucose tolerance and lipid profile. Peptide treatment produced potentially beneficial changes in the expression of skeletal muscle genes involved in insulin signaling and islet genes involved in insulin secretion in these murine models of T2D. Lead compounds uncovered by the study of frog HDPs may provide a basis for the design of new types of agents that can be used, alone or in combination with existing therapies, for the treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina/metabolismo , Anuros/metabolismo , Glucose , Citocinas
6.
Peptides ; 174: 171168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320643

RESUMO

The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Receptores dos Hormônios Gastrointestinais , Humanos , Incretinas/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Glicemia/metabolismo , Duodeno/metabolismo , Peptídeos/uso terapêutico , Células Enteroendócrinas/metabolismo , Receptores Acoplados a Proteínas G , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
7.
Peptides ; 173: 171149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184193

RESUMO

Options for the treatment of type 2 diabetes mellitus (T2DM) and obesity have recently been expanded by the results of several large clinical trials with incretin-based peptide therapies. Most of these studies have been conducted with the glucagon-like peptide-1 (GLP-1) receptor agonist semaglutide, which is available as a once weekly subcutaneous injection and once daily tablet, and the once weekly injected dual agonist tirzepatide, which interacts with receptors for GLP-1 and glucose-dependent insulinotropic polypeptide (GIP). In individuals with T2DM these therapies have achieved reductions of glycated haemoglobin (HbA1c) by > 2% and lowered body weight by > 10%. In some studies, these agents tested in non-diabetic, obese individuals at much higher doses have lowered body weight by > 15%. Emerging evidence suggests these agents can also offer cardio-protective and potentially reno-protective effects. Other incretin-based peptide therapies in early clinical development, notably a triple GLP-1/GIP/glucagon receptor agonist (retatrutide) and a combination of semaglutide with the amylin analogue cagrilintide (CagriSema), have shown strong efficacy. Although incretin therapies can incur adverse gastrointestinal effects these are for most patients mild-to-moderate and transient but result in cessation of treatment in some cases. Thus, the efficacy of new incretin-based peptide therapies is enhancing the opportunity to control body weight and blood glucose and improve the treatment of T2DM and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Incretinas/uso terapêutico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Obesidade , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Peso Corporal , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico
8.
Acta Physiol (Oxf) ; 240(3): e14101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243723

RESUMO

AIM: Despite its abundance in pancreatic islets of Langerhans and proven antihyperglycemic effects, the impact of the essential amino acid, taurine, on islet ß-cell biology has not yet received due consideration, which prompted the current studies exploring the molecular selectivity of taurine import into ß-cells and its acute and chronic intracellular interactions. METHODS: The molecular aspects of taurine transport were probed by exposing the clonal pancreatic BRIN BD11 ß-cells and primary mouse and human islets to a range of the homologs of the amino acid (assayed at 2-20 mM), using the hormone release and imaging of intracellular signals as surrogate read-outs. Known secretagogues were employed to profile the interaction of taurine with acute and chronic intracellular signals. RESULTS: Taurine transporter TauT was expressed in the islet ß-cells, with the transport of taurine and homologs having a weak sulfonate specificity but significant sensitivity to the molecular weight of the transporter. Taurine, hypotaurine, homotaurine, and ß-alanine enhanced insulin secretion in a glucose-dependent manner, an action potentiated by cytosolic Ca2+ and cAMP. Acute and chronic ß-cell insulinotropic effects of taurine were highly sensitive to co-agonism with GLP-1, forskolin, tolbutamide, and membrane depolarization, with an unanticipated indifference to the activation of PKC and CCK8 receptors. Pre-culturing with GLP-1 or KATP channel inhibitors sensitized or, respectively, desensitized ß-cells to the acute taurine stimulus. CONCLUSION: Together, these data demonstrate the pathways whereby taurine exhibits a range of beneficial effects on insulin secretion and ß-cell function, consistent with the antidiabetic potential of its dietary low-dose supplementation.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Animais , Camundongos , Taurina/farmacologia , Transdução de Sinais , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes
9.
10.
Diabet Med ; 41(3): e15274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38130163
11.
Diabetes Obes Metab ; 26(1): 16-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37845573

RESUMO

The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting ß-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of ß-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing ß-cell dedifferentiation or promoting the transdifferentiation of non-ß-cells towards an insulin-positive ß-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing ß-cell loss or generating new ß-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent ß-cell decline in diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Plasticidade Celular , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo , Transdiferenciação Celular
12.
Peptides ; 169: 171093, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37660881

RESUMO

Effects of sustained activation of glucagon-like peptide-1 (GLP-1) receptors (GLP-1R) as well as antagonism of receptors for glucose-dependent insulinotropic peptide (GIP) on intestinal morphology and related gut hormone populations have not been fully investigated. The present study assesses the impact of 21-days twice daily treatment with the GLP-1R agonist exendin-4 (Ex-4), or the GIP receptor (GIPR) antagonist mGIP(3-30), on these features in obese mice fed a high fat diet (HFD). HFD mice presented with reduced crypt depth when compared to normal diet (ND) controls, which was reversed by Ex-4 treatment. Both regimens lead to an enlargement of villi length in HFD mice. HFD mice had increased numbers of GIP and PYY positive ileal cells, with both treatment interventions reversing the effect on PYY positive cells, but only Ex-4 restoring GIP ileal cell populations to ND levels. Ex-4 and mGIP (3-30) marginally decreased GLP-1 villi immunoreactivity and countered the reduction of ileal GLP-1 content caused by HFD. As expected, HFD mice presented with elevated pancreatic islet area. Interestingly, mGIP(3-30), but not Ex-4, enhanced islet and beta-cell areas in HFD mice despite lack of effect of beta-cell turnover, whilst Ex-4 increased delta-cell area. Co-localisation of islet PYY or GLP-1 with glucagon was increased by Ex-4, whilst islet PYY co-immunoreactivity with somatostatin was enhanced by mGIP(3-30) treatment. These observations highlight potential new mechanisms linked to the metabolic benefits of GLP-1R agonism and GIPR antagonism in obesity.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Ilhotas Pancreáticas , Animais , Camundongos , Camundongos Obesos , Peptídeo 1 Semelhante ao Glucagon , Exenatida , Polipeptídeo Inibidor Gástrico/farmacologia
13.
J Endocrinol ; 259(2)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650517

RESUMO

The present study examines differences in metabolic and pancreatic islet adaptative responses following streptozotocin (STZ) and hydrocortisone (HC) administration in male and female transgenic GluCreERT2/Rosa26-eYFP mice. Mice received five daily doses of STZ (50 mg/kg, i.p.) or 10 daily doses of HC (70 mg/kg, i.p.), with parameters assessed on day 11. STZ-induced hyperglycaemia was evident in both sexes, alongside impaired glucose tolerance and reduced insulin concentrations. HC also had similar metabolic effects in male and female mice resulting in classical increases of circulating insulin indicative of insulin resistance. Control male mice had larger pancreatic islets than females and displayed a greater reduction of islet and beta-cell area in response to STZ insult. In addition, female STZ mice had lower levels of beta-cell apoptosis than male counterparts. Following HC administration, female mouse islets contained a greater proportion of alpha cells when compared to males. All HC mice presented with relatively comparable increases in beta- and alpha-cell turnover rates, with female mice being slightly more susceptible to HC-induced beta-cell apoptosis. Interestingly, healthy control female mice had inherently increased alpha-to-beta-cell transdifferentiation rates, which was decreased by HC treatment. The number of glucagon-positive alpha cells altering their lineage to insulin-positive beta cells was increased in male, but not female, STZ mice. Taken together, although there was no obvious sex-specific alteration of metabolic profile in STZ or HC mice, subtle differences in pancreatic islet morphology emphasises the impact of sex hormones on islets and importance of taking care when interpreting observations between males and females.


Assuntos
Células Secretoras de Glucagon , Ilhotas Pancreáticas , Feminino , Masculino , Camundongos , Animais , Insulina , Glucagon , Camundongos Transgênicos , Hidrocortisona
14.
J Control Release ; 360: 93-109, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315695

RESUMO

Insulin regulates blood glucose levels, and is the mainstay for the treatment of type-1 diabetes and type-2 when other drugs provide inadequate control. Therefore, effective oral Insulin delivery would be a significant advance in drug delivery. Herein, we report the use of the modified cell penetrating peptide (CPP) platform, Glycosaminoglycan-(GAG)-binding-enhanced-transduction (GET), as an efficacious transepithelial delivery vector in vitro and to mediate oral Insulin activity in diabetic animals. Insulin can be conjugated with GET via electrostatic interaction to form nanocomplexes (Insulin GET-NCs). These NCs (size and charge; 140 nm, +27.10 mV) greatly enhanced Insulin transport in differentiated in vitro intestinal epithelium models (Caco2 assays; >22-fold increased translocation) with progressive and significant apical and basal release of up-taken Insulin. Delivery resulted in intracellular accumulation of NCs, enabling cells to act as depots for subsequent sustained release without affecting viability and barrier integrity. Importantly Insulin GET-NCs have enhanced proteolytic stability, and retained significant Insulin biological activity (exploiting Insulin-responsive reporter assays). Our study culminates in demonstrating oral delivery of Insulin GET-NCs which can control elevated blood-glucose levels in streptozotocin (STZ)-induced diabetic mice over several days with serial dosing. As GET promotes Insulin absorption, transcytosis and intracellular release, along with in vivo function, our simplistic complexation platform could allow effective bioavailability of other oral peptide therapeutics and help transform the treatment of diabetes.


Assuntos
Peptídeos Penetradores de Células , Diabetes Mellitus Experimental , Humanos , Camundongos , Animais , Insulina/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Controle Glicêmico , Células CACO-2 , Peptídeos Penetradores de Células/química , Transcitose , Administração Oral , Glicemia
15.
Reprod Biol ; 23(3): 100784, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343433

RESUMO

Obesity is a major cause of infertility in females with a direct correlation between energy intake and reproductive dysfunction. To explore underlying mechanisms, disturbances in reproductive health and incretin/reproductive hormone receptor expression were studied in female Wistar rats fed a high-fat-diet for 20-weeks. Metabolic parameters and ovarian/adrenal gene expression were monitored along with estrous cycling and fertility upon mating. High-fat-feeding significantly increased body weight, plasma insulin and HOMA-IR, indicative of obesity and insulin resistance. Estrous cycles were prolonged compared to normal chow-fed rats, with 50 % having an average cycle length ≥ 7days. Reproductive outcomes revealed high-fat-diet reduced litter size by 48 %, with 16 % rats unable to achieve pregnancy. Furthermore, 80 % of the high-fat group took > 35 days to become pregnant compared to 33 % fed a normal-diet. Also, 35 % of pups born to high-fat-fed rats were eaten by mothers or born dead which was not observed with control rats. These changes were associated with downregulation of Amh, Npy2R and GcgR gene expression in ovaries with upregulation of InsR and Glp-1R genes. In adrenals, Glp-1R, GipR, Npy2R, InsR, GcgR, GshR and Esr-1 genes were upregulated. Histological analysis of high-fat-diet ovaries and adrenals revealed changes in morphology with significantly increased number of cysts and reduced adrenal capsule thickness. Circulating levels of insulin, testosterone and progesterone was significantly higher in high-fat group with reduced FSH levels in plasma. These data demonstrate that high-fat feeding disrupts female reproductive function and suggest important interactions between gut and reproductive hormones in ovaries and adrenals which merit further investigation.


Assuntos
Incretinas , Ovário , Gravidez , Ratos , Animais , Feminino , Ovário/metabolismo , Ratos Wistar , Obesidade/complicações , Fertilidade , Dieta Hiperlipídica/efeitos adversos , Insulina , Expressão Gênica
16.
PLoS One ; 18(5): e0286062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228045

RESUMO

Roux-en-Y gastric-bypass (RYGB) induced alterations in intestinal morphology and gut-cell hormone expression profile in the bypassed biliopancreatic-limb (BPL) versus the alimentary-limbs (AL) are poorly characterised. This pilot study has therefore explored effects following RYGB in high-fat-diet (HFD) and normal-diet (ND) rats. Female Wistar rats (4-week-old) were fed HFD or ND for 23-weeks prior to RYGB or sham surgeries. Immunohistochemical analysis of excised tissue was conducted three-weeks post-surgery. After RYGB, intestinal morphology of the BPL in both HFD and ND groups was unchanged with exception of a small decrease in villi width in the ND-RYGB and crypt depth in the HFD-RYGB group. However, in the AL, villi width was decreased in ND-RYGB rats but increased in the HFD-RYGB group. In addition, crypt depth decreased after RYGB in the AL of HFD rats. GIP positive cells in either limb of both groups of rats were unchanged by RYGB. Similarly, there was little change in GLP-1 positive cells, apart from a small decrease of numbers in the villi of the BPL in HFD rats. RYGB increased GLP-2 cell numbers in the AL of ND-RYGB rats, including in both crypts and villi. This was associated with decreased numbers of cells expressing PYY in the AL of ND-RYGB rats. The BPL appears to maintain normal morphology and unchanged enteroendocrine cell populations despite being bypassed in RYGB-surgery. In contrast, in the AL, villi area is generally enhanced post-RYGB in ND rats with increased numbers of GLP-2 positive cells and decreased expression of PYY.


Assuntos
Derivação Gástrica , Hormônios Gastrointestinais , Animais , Feminino , Ratos , Peptídeo 2 Semelhante ao Glucagon , Projetos Piloto , Ratos Wistar , Peptídeo YY/metabolismo
17.
Mol Cell Endocrinol ; 570: 111932, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080378

RESUMO

OBJECTIVE: Glucagon receptor (GCGR) antagonism elicits antihyperglycemic effects in rodents and humans. The present study investigates whether the well characterised peptide-based GCGR antagonist, desHis1Pro4Glu9-glucagon (Lys12PAL), alters alpha-cell turnover or identity in mice. METHODS: Multiple low-dose streptozotocin (STZ) treated (50 mg/kg bw, 5 days) transgenic GluCreERT2;ROSA26-eYFP mice were employed. STZ mice received twice daily administration of saline vehicle or desHis1Pro4Glu9-glucagon (Lys12PAL), at low- or high-dose (25 and 100 nmol/kg, respectively) for 11 days. RESULTS: No GCGR antagonist induced changes in food or fluid intake, body weight or glucose homeostasis were observed. As expected, STZ dramatically reduced (P < 0.001) islet numbers and increased (P < 0.01) alpha-to beta-cell ratio, which was linked to elevated (P < 0.05) levels of beta-cell apoptosis. Whilst treatment with desHis1Pro4Glu9-glucagon (Lys12PAL) decreased (P < 0.05-P < 0.001) alpha- and beta-cell areas, it also helped restore the classic rodent islet alpha-cell mantle in STZ mice. Interestingly, low-dose desHis1Pro4Glu9-glucagon (Lys12PAL) increased (P < 0.05) alpha-cell apoptosis rates whilst high dose decreased (p < 0.05) this parameter. This difference reflects substantially increased (P < 0.001) alpha-to beta-cell transdifferentiation following high dose desHis1Pro4Glu9-glucagon (Lys12PAL) treatment, which was not fully manifest with low-dose therapy. CONCLUSIONS: Taken together, the present study indicates that peptidic GCGR antagonists can positively influence alpha-cell turnover and lineage in identity in multiple low-dose STZ mice, but that such effects are dose-related.


Assuntos
Insulina , Receptores de Glucagon , Humanos , Camundongos , Animais , Hiperplasia , Glucagon/farmacologia , Glicemia
18.
Expert Opin Pharmacother ; 24(5): 587-597, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36927378

RESUMO

INTRODUCTION: Obesity is recognized as a major healthcare challenge. Following years of slow progress in discovery of safe, effective therapies for weight management, recent approval of the glucagon-like peptide 1 receptor (GLP-1R) mimetics, liraglutide and semaglutide, for obesity has generated considerable excitement. It is anticipated these agents will pave the way for application of tirzepatide, a highly effective glucose-dependent insulinotropic polypeptide receptor (GIPR), GLP-1R co-agonist, recently approved for management of type 2 diabetes mellitus. AREAS COVERED: Following promising weight loss in obese individuals in Phase III clinical trials, liraglutide and semaglutide were approved for weight management without diabetes. Tirzepatide has attained Fast Track designation for obesity management by the US Food and Drug Association. This narrative review summarizes experimental, preclinical, and clinical data for these agents and related GLP-1R/GIPR co-agonists, prioritizing clinical research published within the last 10 years where possible. EXPERT OPINION: GLP-1R mimetics are often discontinued within 24 months meaning long-term application of these agents in obesity is questioned. Combined GIPR/GLP-1R agonism appears to induce fewer side effects, indicating GLP-1R/GIPR co-agonists may be more suitable for enduring obesity management. After years of debate, this GIPR-biased GLP-1R/GIPR co-agonist highlights the therapeutic promise of including GIPR modulation for diabetes and obesity therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Humanos , Liraglutida/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/farmacologia , Polipeptídeo Inibidor Gástrico/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico
19.
J Pharm Pharmacol ; 75(6): 758-763, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36879406

RESUMO

OBJECTIVES: Within mammalian pancreatic islets, there are two major endocrine cell types, beta-cells which secrete insulin and alpha-cells which secrete glucagon. Whereas, insulin acts to lower circulating glucose, glucagon counters this by increasing circulating glucose via the mobilisation of glycogen. Synthalin A (Syn A) was the subject of much research in the 1920s and 1930s as a potential pancreatic alpha-cell toxin to block glucagon secretion. However, with the discovery of insulin and its lifesaving use in patients with diabetes, research on Syn-A was discontinued. KEY FINDINGS: This short review looks back on early studies performed with Syn A in animals and humans with diabetes. These are relevant today because both type 1 and type 2 diabetes are now recognised as states of not only insulin deficiency but also glucagon excess. SUMMARY: Lessons learned from this largely forgotten portfolio of work and therapeutic strategy aimed at limiting the number or function of islet alpha-cells might be worthy of reconsideration.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Animais , Humanos , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo , Mamíferos/metabolismo
20.
Life Sci ; 318: 121475, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754346

RESUMO

AIMS: To assess the role of GPR120 in glucose metabolism and incretin regulation from enteroendocrine L- and K-cells with determination of the cellular localisation of GPR120 in intestinal tissue and clonal Glucagon-Like Peptide-1 (GLP-1)/Gastric Inhibitory Polypeptide (GIP) cell lines. MAIN METHODS: Anti-hyperglycaemic, insulinotropic and incretin secreting properties of the GPR120 agonist, GW-9508 were explored in combination with oral and intraperitoneal glucose tolerance tests (GTT) in lean, diabetic and incretin receptor knockout mice. Cellular localisation of GPR120 was assessed by double immunofluorescence. KEY FINDINGS: Compared to intraperitoneal injection, oral administration of GW-9508 (0.1 µmol/kg body weight) together with glucose reduced the glycaemic excursion by 22-31 % (p < 0.05-p < 0.01) and enhanced glucose-induced insulin release by 30 % (p < 0.01) in normal mice. In high fat fed diabetic mice, orally administered GW-9508 lowered plasma glucose by 17-27 % (p < 0.05-p < 0.01) and augmented insulin release by 22-39 % (p < 0.05-p < 0.001). GW-9508 had no effect on the responses of GLP-1 receptor knockout mice and GIP receptor knockout mice. Consistent with this, oral GW-9508 increased circulating total GLP-1 release by 39-44 % (p < 0.01) and total GIP by 37-47 % (p < 0.01-p < 0.001) after 15 and 30 min in lean NIH Swiss mice. Immunocytochemistry demonstrated GPR120 expression on mouse enteroendocrine L- and K-cells, GLUTag cells and pGIP/Neo STC-1 cells. SIGNIFICANCE: GPR120 is expressed on intestinal L- and K-cells and stimulates GLP-1/GIP secretory pathways involved in mediating enhanced insulin secretion and improved glucose tolerance, following oral GW-9508. These novel data strongly support the development of potent and selective GPR120 agonists as an effective therapeutic approach for diabetes.


Assuntos
Diabetes Mellitus Experimental , Insulinas , Camundongos , Animais , Incretinas/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Polipeptídeo Inibidor Gástrico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose , Camundongos Knockout , Insulinas/uso terapêutico , Glicemia/metabolismo , Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...